吉林大学赵杰/北京大学吴水林AFM:生物启发式Janus贴片,治疗腹壁缺损!
时间:2024-07-15 16:01:53 热度:37.1℃ 作者:网络
用于治疗腹壁缺损的植入式生物医学补片需要具备抗菌、抗粘连和促进愈合的能力,以确保手术成功并预防术后并发症。然而,同时满足这三种关键属性往往面临挑战,因为这些过程在治疗过程中往往是相互矛盾的。为了打破抗菌活性与细胞相容性、细胞粘附与抗粘连之间的障碍,吉林大学赵杰、北京大学吴水林开发了一种具有不对称双面结构的生物启发型补片。这种生物启发型双面补片在其顶表面采用蝉翼启发的纳米结构,既能实现机械性杀菌效果,又能促进成纤维细胞的粘附和增殖,这是由于其对细菌和哺乳动物细胞具有固有的“选择性生物杀灭活性”。随后,在底表面接枝了具有强大抗污染特性的聚离子层,实现了同一补片两侧的细胞粘附和抗粘连。与传统的商业化聚丙烯(PP)网状材料相比,面向腹壁的双面补片顶表面在预防术后感染和促进组织修复方面展现出更优越的能力。同时,面向内脏的另一侧有效地防止了任何内脏组织粘连。凭借这些显著的性能,生物启发型双面补片为设计治疗腹壁缺损的下一代补片提供了开创性策略。该研究以题为“A Bio-Inspired Janus Patch for Treating Abdominal Wall Defects”的论文发表在《Advanced Functional Materials》上。
图1展示了生物启发型Janus补片的设计和治疗腹壁缺损的概念。它描绘了补片的不对称Janus结构,顶表面模仿蝉翼的纳米结构,用以实现机械性杀菌效果并促进成纤维细胞的粘附与增殖;而底表面则接枝了聚离子层,具备强大的抗污染特性,用以防止细胞粘附和组织粘连。这一设计有效地整合了抗菌、细胞粘附和抗粘连的相反功能于同一补片的两个不同侧面,为实现腹壁缺损的有效治疗提供了新策略。
图1. 生物启发型双面补片的示意图
【表征】
图2通过原子级模板辅助的热纳米压印光刻技术(TNIL)成功地将具有周期性纳米结构的表面转移到聚丙烯(PP)基底上,形成了类似蝉翼的纳米支柱阵列。随后,在这些纳米结构表面涂覆了富含羟基和氨基的聚多巴胺(PDA)层,显著提高了表面的亲水性。底部表面通过表面引发的光引发剂介导的聚合(SI-PIMP)接枝了聚磺甜菜碱甲基丙烯酸酯(PSBMA)刷,展现出优异的抗微生物、蛋白质、成纤维细胞和血栓的粘附性能。此外,通过扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)、衰减全反射傅里叶变换红外光谱(ATR-FTIR)和水接触角(WCA)测试,确认了纳米结构和化学改性层的成功构建,以及Janus补片的表面化学组成和润湿性。
图2. 通过TNIL和SI-PIMP制备生物启发型双面补片的工艺流程图
【抗菌性能】
图3通过扫描电子显微镜(SEM)、共聚焦激光扫描显微镜(CLSM)观察到,与Flat表面相比,NP和NP-PDA表面上的细菌形态扭曲、膜结构受损,显示出明显的机械性杀菌活性。活/死染色实验进一步证实了NP-PDA表面对细菌具有最高的杀菌效率。此外,通过涂布平板法定量分析了不同表面的细菌存活率,结果显示NP-PDA表面显著降低了细菌的存活率,对E. coli和P. aeruginosa分别显示出7.2%和0.5%的存活率,远低于Flat和NP表面。这些结果表明,NP-PDA表面具有显著的抗菌效果,其高亲水性可能增强了机械性杀菌效率,为Janus补片的顶表面提供了有效的抗菌特性。
图3. 不同表面上大肠杆菌和铜绿假单胞菌的SEM、CLSM和菌落图像
【不同表面的血液相容性】
图4通过扫描电子显微镜(SEM)观察到,新鲜兔红细胞(RBCs)在所有不同表面上孵育后均保持完整和圆形,表明这些表面未对正常RBCs造成机械损伤。溶血率测试显示,补片的顶表面和底表面的溶血率均低于国家标准(5%),显示出良好的血液相容性。此外,底表面的PSBMA涂层显著减少了红细胞的粘附,这归因于其抗生物污染活性。在动态流动条件下进行的血液凝固实验中,Flat-S表面与Flat表面相比,展现出了显著的抗血栓性,即使没有抗凝剂也能完全抑制血栓的形成。使用荧光素异硫氰酸酯标记的牛血清白蛋白(FITC-BSA)评估了底表面的抗蛋白污染性能,结果显示Flat-S表面的蛋白质沉积量显著低于原始的疏水性PP表面。这些结果反映了Janus补片不仅与红细胞相容,还能抵抗血液和蛋白质的粘附,这对于预防内脏粘连至关重要。
图4.不同表面对红细胞(RBCs)、血栓和L929成纤维细胞的影响
【L929成纤维细胞在不同表面上的培养和相关基因表达分析】
图5通过荧光显微镜图像和细胞计数,观察到NP-PDA表面相比Flat-PDA表面显著增加了细胞铺展和伪足的延伸,且细胞活性在NP-PDA表面显著提高。定量逆转录聚合酶链反应(qRT-PCR)分析显示,与细胞粘附、增殖和迁移相关的基因(如YAP1和bFGF)在NP-PDA表面培养的细胞中表达上调,表明纳米柱结构能够通过激活机械转导来调节细胞行为。此外,共培养实验中,NP-PDA表面显示出对细菌的选择性生物杀灭活性,同时促进了L929细胞的粘附和增殖,而Flat-PDA表面则因细菌定植导致细胞活性显著下降。有限元模拟进一步阐释了NP-PDA表面对细菌和细胞的选择性作用机制,揭示了纳米柱对细菌和细胞施加的应力差异。
图5. L929成纤维细胞在不同表面上的培养和相关基因表达分析
【PP网状材料和JNS补片在体内预防内脏粘连的效果评估】
图6通过小鼠皮下植入模型,研究了JNS补片与市售的聚丙烯(PP)网状材料相比,在预防细菌感染和减少炎症反应方面的效果。H&E染色结果显示,与PP材料相比,JNS补片周围软组织中的炎症细胞数量显著减少,表明JNS补片能有效抑制炎症反应。此外,通过定量分析从植入周围组织中重新培养的细菌数量,发现JNS补片能消除超过99%的细菌,而PP材料和单功能抗污染补片(SSP)组中仍有大量活细菌。在大鼠腹壁缺损模型中,JNS补片同样显示出较PP网状材料更少的炎症细胞和细菌数量。免疫组化分析也表明,JNS补片能显著降低炎症因子IL-6和TNF-α的表达。
图6. PP网状材料和JNS补片在体内预防内脏粘连的效果评估
【PP网状材料和JNS补片在体内修复缺损的效果评估】
图7通过在大鼠腹壁缺损模型中观察术后7天和14天的粘连情况,结果显示PP网状材料组在术后第7天就出现了严重且持续的粘连,且这些粘连无法移除,到了第14天,PP网状材料周围形成了更厚的粘连组织,并伴有密集的新生血管形成,临床粘连评分分别为3.8和4.0。相比之下,JNS补片组在术后第7天和第14天均未触发任何粘连形成,临床粘连评分为0,表明JNS补片底表面在预防粘连方面非常有效。此外,JNS补片在促进组织修复方面也表现出色,术后第7天和第14天的组织修复情况显示,JNS补片组的缺陷区域与周围组织几乎无法区分,且在术后第14天,JNS补片的顶表面已与组织整合。微计算机断层扫描(micro-CT)分析和组织学分析进一步证实了JNS补片在促进软组织形成、新细胞积累和胶原蛋白沉积方面的优势。
图7. PP网状材料和JNS补片在体内修复缺损的效果评估
【PP网片和JNS贴片在体内缺陷修复中的评估】
图8通过术后7天和14天的观察,JNS补片治疗的缺损区域肉眼观察无法区分,且与周围组织良好整合。Micro-CT分析显示JNS补片组在软组织形成方面优于PP网状材料组。组织学分析,包括H&E染色和Masson三色染色,进一步揭示了JNS补片能更快地促进新细胞积累和胶原蛋白沉积,与PP网状材料相比,JNS补片治疗的腹壁缺损区域胶原蛋白表达更高。定量分析也证实了JNS补片在修复腹壁缺损中促进胶原蛋白生成的能力。这些结果表明Janus补片在重建腹壁缺损方面具有促进组织修复和减少炎症反应的潜力,为设计具有内在抗菌、抗粘连和促进愈合特性的生物医学补片提供了有力的实验依据。
图8. PP网片和JNS贴片在体内缺陷修复中的评估
【传统PP网状材料与生物启发型双面补片治疗腹壁缺损的比较】
首先,展示了传统PP网状材料与生物启发型Janus补片治疗腹壁缺损的对比示意图,强调了Janus补片如何通过其独特的机械性杀菌纳米结构顶表面促进细菌的吸附和破裂,同时保持与成纤维细胞的相容性,以及如何通过底表面的抗污染PSBMA层有效防止内脏粘连。此外,总结了过去5年报道的各种补片在抗菌、抗粘连和促进愈合方面的功能多样性,并与本研究开发的Janus补片进行了比较。结论是,尽管以往的策略未能同时实现这三种属性,但本研究中的生物启发型Janus补片成功地整合了这些功能,为设计下一代软组织修复补片提供了重要的指导价值,并展示了在治疗腹壁缺损方面的显著优势和潜力。
图9. 传统PP网状材料与生物启发型双面补片治疗腹壁缺损的比较
【小结】
该研究开发了一种具有生物启发性的Janus双面补片,通过其独特的纳米结构和抗生物污染的离子刷打破了目前治疗腹壁缺损的障碍。补片的顶表面利用了细菌和成纤维细胞的特性,经过细菌和细胞共培养后发现,Janus补片的机械性杀菌纳米柱不仅对致病细菌具有抗菌活性,而且能促进成纤维细胞的粘附和增殖,展现出对细菌和细胞的“选择性生物杀灭活性”。同时,补片底表面接枝的抗污染PSBMA刷子有效地预防了内脏粘连,这在构建的大鼠腹壁缺损模型中得到了证实,临床粘连评分为0。这种不对称补片制造策略,整合了抗菌、抗粘连和促进愈合的特性,为设计和开发下一代内软组织修复补片提供了巨大的希望。未来,我们将在此工作的基础上,专注于增强补片的广谱抗菌能力、生物可降解性和舒适性,以提升这种生物启发型Janus策略的实用价值。
原文链接:
https://doi.org/10.1002/adfm.202315827