综述|二甲双胍改善精神分裂症认知功能障碍的机制研究进展
时间:2024-09-13 06:01:36 热度:37.1℃ 作者:网络
摘 要 精神分裂症(schizophrenia,SZ)是常见的慢性精神疾病,其核心症状之一是认知功能障碍,抗精神病药物治疗在改善认知功能方面效果不佳。近期研究发现,二甲双胍可改善SZ患者的认知功能障碍,其机制可能包括改善胰岛素抵抗、修复神经损伤、调节神经免疫和抗氧化应激。阐明这些机制可为SZ认知功能障碍的治疗提供新思路。
关键词
二甲双胍;精神分裂症;认知功能障碍;代谢综合征;胰岛素抵抗;神经元可塑性;神经免疫调节;氧化应激
认知功能障碍是精神分裂症(schizophrenia,SZ)的核心症状之一,绝大多数SZ患者存在认知功能障碍[1]。认知功能障碍严重影响患者的社会功能[2],因此,急需寻找有效改善SZ患者认知功能的药物。二甲双胍是治疗2型糖尿病的一线用药,部分研究发现,二甲双胍可以改善2型糖尿病和非2型糖尿病患者的认知功能[3-5]。近年研究不断深入,发现二甲双胍对SZ认知功能障碍具有改善作用[6-7],但其具体作用机制尚未明确。因此,本文就二甲双胍对SZ患者认知功能的改善作用及其机制展开综述,为进一步的研究和临床实践提供新思路。
1 SZ患者认知功能障碍
SZ患者认知功能障碍表现为记忆、计算、时空间定向、结构能力、执行能力、语言理解的表达及应用等方面的异常[8]。其损害的具体机制尚不十分明确,但研究显示神经递质异常是认知功能受损的关键因素之一[9]。首先,多巴胺系统的功能异常与SZ发病密切相关,尤其是前额叶皮质中多巴胺D1受体功能障碍,与SZ的认知功能障碍和阴性症状有关[10]。其次,神经炎症反应也在SZ认知功能障碍的发生过程中有着重要作用,血浆中炎症因子的水平高低与SZ患者注意力、记忆力和学习能力等社会功能退化之间存在一定的关联[11]。此外,神经发育和突触可塑性异常也是SZ认知功能障碍的潜在机制[12-13]。
2 二甲双胍改善SZ患者认知功能
二甲双胍作为治疗2型糖尿病的一线药物已有60多年。研究表明,二甲双胍在治疗阿尔茨海默病、帕金森病及精神障碍(如SZ和重度抑郁症)中发挥神经保护作用[14]。最新研究发现,二甲双胍能够改善SZ患者的认知功能障碍[6]。SHAO等[15]将72例SZ患者随机分为两组,一组接受抗精神病药物和二甲双胍联合治疗(n=48),另一组仅接受抗精神病药物治疗(n=24),经过24周的干预,发现联合使用二甲双胍的患者在处理速度、工作记忆、言语学习和视觉学习方面的表现显著强于另一组;进一步的探究发现,这种认知功能的改善可能与二甲双胍增加前额叶背外侧、前扣带皮质及中扣带皮质之间的功能连接性有关。因此,进一步研究二甲双胍在改善SZ认知功能中的作用及其机制是必要的。
3 二甲双胍改善SZ患者认知功能的潜在机制
目前,二甲双胍改善认知的治疗机制仍不完全清楚,可能与改善胰岛素抵抗、修复神经损伤、调节神经免疫及抗氧化应激有关[6]。
3.1 改善胰岛素抵抗 一项涉及90例首发未用药SZ患者的临床试验显示,这些患者的胰岛素抵抗水平高于健康对照组,且与认知功能损伤程度有显著关联[16];TANG等[17]进一步评估245例SZ谱系障碍患者,发现患者的社会认知能力与胰岛素敏感性之间呈显著负相关关系。动物研究发现,胰岛素抵抗可以导致海马内胰岛素受体和神经元受损,进而影响认知功能[18]。此外,代谢综合征作为一组以肥胖、高血糖、血脂异常以及高血压等异常因素聚集的临床征候群[19-20],可对认知功能产生负面影响[21]。研究发现,同时患有代谢综合征的SZ患者认知功能(包括整体认知和不同认知维度)损害程度,比没有代谢综合征的患者更为严重[22]。值得注意的是,SZ患者代谢综合征的患病率是普通人群的2倍[23],这表明代谢综合征在SZ患者中更加普遍,加剧了其认知功能损害。因此,代谢综合征中的胰岛素抵抗,是认知功能受损的关键因素之一[24]。
近年来,研究发现脑胰岛素抵抗不仅是SZ认知功能损伤的一个关键病理生理机制,同时也是二甲双胍治疗SZ认知功能障碍的基础[25]。动物实验发现,二甲双胍能够逆转小鼠脑胰岛素抵抗导致的神经元损伤[26]。LU等[27]进一步研究显示,二甲双胍可以通过激活单磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)增加小鼠大脑中胰岛素降解酶(insulin-degrading enzyme,IDE),进而改善小鼠的神经功能障碍,并提高学习和记忆能力。此外,研究还发现丝氨酸/苏氨酸蛋白激酶(serine/threonine kinase,AKT)/糖原合成酶激酶(glycogen synthase kinase,GSK)-3β信号通路表达增强不仅与胰岛素缺乏、胰岛素抵抗有关,还与SZ空间工作记忆相关[28]。WANG等[29]在MK-801诱导的SZ样大鼠模型中发现,二甲双胍可以逆转大鼠大脑皮质中AKT和GSK-3β的磷酸化,改善脉冲前抑制(prepulse inhibition,PPI)缺陷,并改善大鼠识别和空间记忆障碍等认知功能。BATTINI等[30]通过对19项随机临床试验进行meta分析,发现二甲双胍在改善SZ患者的认知功能方面具有积极影响,这可能与二甲双胍通过改善线粒体代谢和胰岛素信号转导,以及激活AMPK、调节小胶质细胞表型和增加大脑自噬有关。SHAO等[15]进一步研究发现,二甲双胍对SZ患者处理速度和注意力的提高与代谢功能障碍的控制相关,其可能与二甲双胍增强背外侧前额叶皮质和前/中扣带回皮质之间的功能耦合有关。
综上所述,胰岛素抵抗是SZ患者认知功能受损的关键机制。二甲双胍通过改善胰岛素信号转导、线粒体代谢、激活AMPK等途径,可逆转神经元损伤并改善认知功能。
3.2 修复神经损伤 SZ认知功能障碍与海马、额叶皮质的神经功能异常相关[31]。研究显示,二甲双胍能够通过修复神经发育异常来改善基于海马的学习和记忆障碍[32]。在SZ神经发育异常模型中,动物的海马、额叶皮质和纹状体体积减少,特别是海马体积减少与认知功能损害的严重程度紧密相关[33]。一项系统综述和meta分析表明,二甲双胍可以改善SZ患者言语记忆障碍,这与二甲双胍穿越血脑屏障并在中枢神经系统内发挥神经保护作用有关[30]。
哺乳动物雷帕霉素靶蛋白复合体1(mechanistic target of rapamycin complex 1,mTORC1)信号通路在SZ的发病机制中具有关键作用。首发精神病患者mTORC1的活性降低,反映出mTORC1信号通路在疾病早期就已经存在异常,并且在抗精神病药物治疗后没有显著变化,提示mTORC1可能与SZ的神经发育和免疫代谢状态密切相关[34]。二甲双胍可以通过AMPK依赖和非依赖途径影响mTORC1,进而抑制哺乳动物雷帕霉素靶蛋白(mechanistic target of rapamycin,mTOR)信号转导。这表明二甲双胍可以通过磷酸化调节自噬,预防神经变性和神经炎症,进而提供神经保护作用,显示出二甲双胍具有治疗SZ的潜力[35-36]。此外,AMPK磷酸化及其激活可以调节颅脑海马神经发生的抑制和神经前体细胞(neural progenitor cells,NPCs)功能障碍,进而影响神经认知功能[37]。有研究进一步发现,二甲双胍增强了齿状回NPCs的恢复能力,对神经发生和认知功能障碍有治疗作用[38]。近年来,研究发现二甲双胍还可通过AMP活化蛋白激酶-环磷腺苷反应元件结合-脑源性神经营养因子通路发挥神经营养作用,调节海马神经可塑性[5]。
多巴胺系统功能失调,包括皮质多巴胺D1受体(dopamine D1 receptor,D1R)激活减少、纹状体多巴胺活性减退,与SZ认知功能障碍密切相关[10]。HORVATH等[7]通过研究SZ动物模型(Wisket大鼠)发现,其大脑皮质中的D1R结合、激活能力和基因表达显著降低,表明该SZ动物模型中皮质D1R功能出现显著损伤,同时表现出认知功能障碍。而二甲双胍处理显著增加了大鼠纹状体D1R基因的表达。相较于单独使用氯氮平,二甲双胍与氯氮平联合治疗显著增强D1R的结合和激活能力。此外,氯氮平治疗导致大鼠的学习能力下降,在二甲双胍联合氯氮平治疗后得到显著改善。这些发现为二甲双胍在SZ治疗中的潜在应用提供了新的见解,特别是在改善由氯氮平引起的认知和行为障碍方面。
综上所述,SZ患者的认知功能障碍与海马、额叶皮质和纹状体的神经功能异常密切相关。二甲双胍通过修复神经发育异常、调节mTORC1信号通路、增强海马神经发生和改善多巴胺功能失调,展示出显著的神经保护作用,穿越血脑屏障发挥作用,改善了言语记忆障碍和神经发生,展现了治疗SZ认知功能障碍的潜力。
3.3 调节神经免疫 神经炎症在外周和中枢神经系统疾病发病机制中发挥着重要作用,炎症通过激活小胶质细胞和星形胶质细胞的功能障碍,导致大脑结构发生变化[39-40]。一项meta分析发现,SZ患者血浆白介素-6(interleukin-6,IL-6)、白介素-1β(IL-1β)、肿瘤坏死因子-α(tumor necrosis factor -α,TNF-α)和C反应蛋白(C-reactive protein,CRP)等炎症标志物水平,与多个认知领域(注意力处理速度、执行功能、工作记忆、言语和视觉学习以及记忆)存在显著的负相关关系[11]。研究发现,通过减少炎性因子的释放,以及调节多巴胺介导的神经免疫反应,可以改善神经退行性疾病患者认知功能[41-43]。
在SZ研究中发现,调节性T细胞(regulatory T cells,Tregs)对于维持星形胶质细胞和小胶质细胞的稳态至关重要[44]。CORSI-ZUELLI等[45]首次提出SZ中Tregs功能减退的假说(hypofunctional Treg hypothesis,h-Tregs),发现SZ患者低Tregs与严重的精神病性症状有关。二甲双胍可以通过调节AMP活化蛋白激酶-哺乳动物雷帕霉素靶蛋白-信号转导与转录激活因子3信号通路,改变T辅助因子17(T helper 17,Th17)/Tregs平衡,增加Tregs细胞数量,从而抑制Th17细胞的扩增和对中枢神经系统的影响[46-47],其中SZ患者的Th17异常表达对周围炎症和神经炎症以及其对神经回路的免疫毒性效应起着关键作用[48]。此外,二甲双胍还可以通过诱导AMPK和蛋白激酶C/环腺苷酸应答元件结合蛋白通路,以及阻断大脑中核因子κB(nuclear factor-κB,NF-κB)通路,有效抑制神经炎症、保护神经元并增强神经可塑性,进而促进认知功能改善[49-50]。
综上所述,神经炎症在SZ患者的认知功能障碍中起重要作用。二甲双胍通过调节AMPK-mTORC1信号通路和增加Tregs细胞数量,抑制神经炎症和保护神经元,从而帮助改善认知功能。
3.4 抗氧化应激 氧化应激与抗氧化防御机制在认知功能障碍的预防、发病和发展中起着重要作用[51-52]。SZ患者体内广泛存在氧化应激状态,表现为促氧化过程增强和抗氧化系统缺乏[53],这与认知功能障碍严重程度密切相关[54-55]。研究发现,氧化应激影响SZ患者小清蛋白神经元和少突胶质细胞功能,导致N-甲基-D-天冬氨酸受体功能减退、线粒体损伤和神经炎症,形成以氧化应激为核心的恶性循环,使氧化应激状态持续,从而导致工作记忆和社会认知等领域认知功能障碍[56-57]。因此,调节氧化应激水平可能是保护SZ患者认知功能的潜在治疗策略[16, 58]。
二甲双胍激活AMPK抑制NF-κB活性,以此缓解氧化应激[59]。它还能直接调控线粒体呼吸链复合物活性,控制活性氧(reactive oxygen species,ROS)水平[60],并影响主要抗氧化剂核因子样2(nuclear factor-like 2,Nrf2)的转录[61],展示出多重抗氧化应激途径。动物研究发现,二甲双胍可通过降低丙二醛水平和增强海马抗氧化能力,提高神经元存活率,从而显著提升记忆力[62]。这说明二甲双胍能够缓解氧化应激水平的异常增加,对神经元损伤产生保护作用,并改善认知功能。近期研究显示,二甲双胍还能减少晚期糖基化终产物(advanced glycation end-products,AGEs)的生成,AGEs会降低SZ海马神经发生,且SZ患者AGEs水平升高与处理速度受损相关[63-64]。这一特殊机制为二甲双胍改善因氧化应激引起的SZ患者认知功能障碍提供了关键证据。
综上所述,SZ患者的认知功能障碍与氧化应激密切相关。二甲双胍可通过激活AMPK、抑制NF-κB、调控ROS水平和减少AGEs生成,缓解氧化应激,保护神经元并改善SZ患者认知功能。
4 总结
本综述深入探讨二甲双胍在治疗SZ患者认知功能障碍方面的潜在作用及其机制。现有研究表明,二甲双胍通过改善胰岛素抵抗、修复神经损伤、调节神经免疫反应和抗氧化应激,显著改善认知功能。尽管其确切机制尚未完全阐明,但临床研究和动物实验为其疗效提供了初步证据。然而,这些研究仅揭示了部分机制,未能完整呈现整个过程,可能遗漏重要的细节和交互作用。因此,未来需要深入考虑机制的多样性和复杂性,以进一步验证二甲双胍的效果和安全性。此外,探索二甲双胍对不同SZ亚型和不同程度认知功能障碍的作用差异,以及与传统抗精神病药物联合使用的效果,也是未来研究的重要方向。
总之,二甲双胍可能成为有效治疗SZ认知功能障碍的选择之一。未来研究将进一步揭示二甲双胍作用机制,为SZ患者认知功能障碍的治疗提供新思路和方法。
参考文献:
1. KESHAVAN M S, EACK S M. Cognitive enhancement interventions are effective for schizophrenia: Why not provide them early[J]. World Psychiatry, 2023, 22(2): 326-327.
2. GREEN M F, HORAN W P, LEE J. Nonsocial and social cognition in schizophrenia: Current evidence and future directions[J]. World Psychiatry, 2019, 18(2): 146-161.
3. CHOW E, YANG A M, CHUNG C H L, et al. A clinical perspective of the multifaceted mechanism of metformin in diabetes, infections, cognitive dysfunction, and cancer[J]. Pharmaceuticals (Basel), 2022, 15(4): 442
4. ZHU X Q, SHEN J Y, FENG S Y, et al. Metformin improves cognition of aged mice by promoting cerebral angiogenesis and neurogenesis[J]. Aging (Albany NY), 2020, 12(18): 17845-17862.
5. CAO G, GONG T, DU Y, et al. Mechanism of metformin regulation in central nervous system: Progression and future perspectives[J]. Biomed Pharmacother, 2022, 156: 113686.
6. DODD S, SOMINSKY L, SISKIND D, et al. The role of metformin as a treatment for neuropsychiatric illness[J]. Eur Neuropsychopharmacol, 2022, 64: 32-43.
7. HORVATH G, KIS G, KEKESI G, et al. Interaction of clozapine with metformin in a schizophrenia rat model[J]. Sci Rep, 2021, 11(1): 16862.
8. VITA A, GAEBEL W, MUCCI A, et al. European Psychiatric Association guidance on treatment of cognitive impairment in schizophrenia[J]. Eur Psychiatry, 2022, 65(1): e57.
9. BOCZEK T, MACKIEWICZ J, SOBOLCZYK M, et al. The role of g protein-coupled receptors (GPCRs) and calcium signaling in schizophrenia. Focus on GPCRs activated by neurotransmitters and chemokines[J]. Cells, 2021, 10(5): 1228.
10. COLLO G, MUCCI A, GIORDANO G M, et al. Negative symptoms of schizophrenia and dopaminergic transmission: Translational models and perspectives opened by iPSC techniques[J]. Front Neurosci, 2020, 14: 632.
11. PATLOLA S R, DONOHOE G, MCKERNAN D P. The relationship between inflammatory biomarkers and cognitive dysfunction in patients with schizophrenia: A systematic review and meta-analysis[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 121: 110668.
12. NOTARAS M, LODHI A, DÜNDAR F, et al. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids[J]. Mol Psychiatry, 2022, 27(3): 1416-1434.
13. WU X L, YAN Q J, ZHU F. Abnormal synaptic plasticity and impaired cognition in schizophrenia[J]. World J Psychiatry, 2022, 12(4): 541-557.
14. LI N, ZHOU T, FEI E. Actions of metformin in the brain: A new perspective of metformin treatments in related neurological disorders[J]. Int J Mol Sci, 2022, 23(15): 8281.
15. SHAO T N, HUANG J X, ZHAO Y, et al. Metformin improves cognitive impairment in patients with schizophrenia: Associated with enhanced functional connectivity of dorsolateral prefrontal cortex[J]. Transl Psychiatry, 2023, 13(1): 315.
16. TAO Q, MIAO Y, LI H H, et al. Insulin resistance and oxidative stress: In relation to cognitive function and psychopathology in drug-naïve, first-episode drug-free schizophrenia[J]. Front Psychiatry, 2020, 11: 537280.
17. TANG S X, OLIVER L D, HÄNSEL K, et al. Metabolic disturbances, hemoglobin A1c, and social cognition impairment in Schizophrenia spectrum disorders[J]. Transl Psychiatry, 2022, 12(1): 233.
18. DODD G T, KIM S J, MÉQUINION M, et al. Insulin signaling in AgRP neurons regulates meal size to limit glucose excursions and insulin resistance[J]. Sci Adv, 2021, 7(9): eabf4100.
19. LI R R, OU J J, LI L, et al. The WNT signaling pathway effector TCF7L2 mediates olanzapine-induced weight gain and insulin resistance[J]. Front Pharmacol, 2018, 9: 379.
20. FAHED G, AOUN L, BOU ZERDAN M, et al. Metabolic syndrome: Updates on pathophysiology and management in 2021[J]. Int J Mol Sci, 2022, 23(2): 786.
21. KOTKOWSKI E, PRICE L R, BLEVINS C J, et al. Using the schmahmann syndrome scale to assess cognitive impairment in young adults with metabolic syndrome: A hypothesis-generating report[J]. Cerebellum, 2021, 20(2): 295-299.
22. CHEN S Y, XIA X W, DENG C, et al. The correlation between metabolic syndrome and neurocognitive and social cognitive performance of patients with schizophrenia[J]. Psychiatry Res, 2020, 288: 112941.
23. VAN CAMPFORT D, STUBBS B, MITCHELL A J, et al. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis[J].World Psychiatry, 2015, 14(3): 339-347.
24. MALIN S K, STEWART N R, UDE A A, et al. Brain insulin resistance and cognitive function: Influence of exercise[J]. J Appl Physiol (1985), 2022, 133(6): 1368-1380.
25. AGARWAL S M, KOWALCHUK C, CASTELLANI L, et al. Brain insulin action: Implications for the treatment of schizophrenia[J]. Neuropharmacology, 2020, 168: 107655.
26. RUEGSEGGER G N, VANDERBOOM P M, DASARI S, et al. Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain[J]. JCI Insight, 2019, 4(18): e130681.
27. LU X Y, HUANG S, CHEN Q B, et al. Metformin ameliorates Aβ pathology by insulin-degrading enzyme in a transgenic mouse model of Alzheimer's disease[J]. Oxid Med Cell Longev, 2020, 2020: 2315106.
28. NAKAO K, SINGH M, SAPKOTA K, et al. GSK3β inhibition restores cortical gamma oscillation and cognitive behavior in a mouse model of NMDA receptor hypofunction relevant to schizophrenia[J]. Neuropsychopharmacology, 2020, 45(13): 2207-2218.
29. WANG X, LUO C, MAO X Y, et al. Metformin reverses the schizophrenia-like behaviors induced by MK-801 in rats[J]. Brain Res, 2019, 1719: 30-39.
30. BATTINI V, CIRNIGLIARO G, LEUZZI R, et al. The potential effect of metformin on cognitive and other symptom dimensions in patients with schizophrenia and antipsychotic-induced weight gain: A systematic review, meta-analysis, and meta-regression[J]. Front Psychiatry, 2023, 14: 1215807.
31. SPEDDING M, SEBBAN C, JAY T M, et al. Phenotypical screening on neuronal plasticity in hippocampal-prefrontal cortex connectivity reveals an antipsychotic with a novel profile[J]. Cells, 2022, 11(7): 1181.
32. TUNC-OZCAN E, WERT S L, LIM P H, et al. Hippocampus-dependent memory and allele-specific gene expression in adult offspring of alcohol-consuming dams after neonatal treatment with thyroxin or metformin[J]. Mol Psychiatry, 2018, 23(7): 1643-1651.
33. NATH M, WONG T P, SRIVASTAVA L K. Neurodevelopmental insights into circuit dysconnectivity in schizophrenia[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 104: 110047.
34. PETRIKIS P, POLYZOU A, PREMETI K, et al. GSK3β and mTORC1 represent 2 distinct signaling markers in peripheral blood mononuclear cells of drug-naive, first episode of psychosis patients[J]. Schizophr Bull, 2022, 48(5): 1136-1144.
35. PAUDEL Y N, ANGELOPOULOU E, PIPERI C, et al. Emerging neuroprotective effect of metformin in Parkinson's disease: A molecular crosstalk[J]. Pharmacol Res, 2020, 152: 104593.
36. DEMARÉ S, KOTHARI A, CALCUTT N A, et al. Metformin as a potential therapeutic for neurological disease: Mobilizing AMPK to repair the nervous system[J]. Expert Rev Neurother, 2021, 21(1): 45-63.
37. LI Y Q, WONG C S. Metabolic Regulation of hippocampal neuronal development and its inhibition after irradiation[J]. J Neuropathol Exp Neurol, 2021, 80(5): 467-475.
38. AYOUB R, RUDDY R M, COX E, et al. Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin[J]. Nat Med, 2020, 26(8): 1285-1294.
39. WILLIAMS J A, BURGESS S, SUCKLING J, et al. Inflammation and brain structure in schizophrenia and other neuropsychiatric disorders: A mendelian randomization study[J]. JAMA Psychiatry, 2022, 79(5): 498-507.
40. 蔡颖, 邱宝山, 廖梦诗, 等. 间歇性θ爆发式磁刺激对高血压大鼠胼胝体髓鞘及局部炎症反应的影响[J]. 中国神经精神疾病杂志, 2020, 46(3): 129-134.
41. BENFANTE R, DI LASCIO S, CARDANI S, et al. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: A new therapeutic perspective in aging-related disorders[J]. Aging Clin Exp Res, 2021, 33(4): 823-834.
42. CHANNER B, MATT S M, NICKOLOFF-BYBEL E A, et al. Dopamine, immunity, and disease[J]. Pharmacol Rev, 2023, 75(1): 62-158.
43. THOMAS BROOME S, LOUANGAPHAY K, KEAY K A, et al. Dopamine: An immune transmitter[J]. Neural Regen Res, 2020, 15(12): 2173-2185.
44. AKKOUH I A, UELAND T, HANSSON L, et al. Decreased IL-1β-induced CCL20 response in human iPSC-astrocytes in schizophrenia: Potential attenuating effects on recruitment of regulatory T cells[J]. Brain Behav Immun, 2020, 87: 634-644.
45. CORSI-ZUELLI F, DEAKIN B, DE LIMA M H F, et al. T regulatory cells as a potential therapeutic target in psychosis? Current challenges and future perspectives[J]. Brain Behav Immun Health, 2021, 17: 100330.
46. LEE S K, PARK M J, JHUN J Y, et al. Combination treatment with metformin and tacrolimus improves systemic immune cellular homeostasis by modulating Treg and Th17 imbalance[J]. Front Immunol, 2020, 11: 581728.
47. DEASON K, TROUTMAN T D, JAIN A, et al. BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation[J]. J Exp Med, 2018, 215(9): 2413-2428.
48. AL-HAKEIM H K, AL-MUSAWI A F, AL-MULLA A, et al. The interleukin-6/interleukin-23/T helper 17-axis as a driver of neuro-immune toxicity in the major neurocognitive psychosis or deficit schizophrenia: A precision nomothetic psychiatry analysis[J]. PLoS One, 2022, 17(10): e0275839.
49. ZHOU C L, PENG B H, QIN Z, et al. Metformin attenuates LPS-induced neuronal injury and cognitive impairments by blocking NF-κB pathway[J]. BMC Neurosci, 2021, 22(1): 73.
50. SYAL C, KOSARAJU J, HAMILTON L, et al. Dysregulated expression of monoacylglycerol lipase is a marker for anti-diabetic drug metformin-targeted therapy to correct impaired neurogenesis and spatial memory in Alzheimer's disease[J]. Theranostics, 2020, 10(14): 6337-6360.
51. FRANZONI F, SCARFÒ G, GUIDOTTI S, et al. Oxidative stress and cognitive decline: The neuroprotective role of natural antioxidants[J]. Front Neurosci, 2021, 15: 729757.
52. NANTACHAI G, VASUPANRAJIT A, TUNVIRACHAISAKUL C, et al. Oxidative stress and antioxidant defenses in mild cognitive impairment: A systematic review and meta-analysis[J]. Ageing Res Rev, 2022, 79: 101639.
53. ERMAKOV E A, DMITRIEVA E M, PARSHUKOVA D A, et al. Oxidative stress-related mechanisms in schizophrenia pathogenesis and new treatment perspectives[J]. Oxid Med Cell Longev, 2021, 2021: 8881770.
54. WIęDłOCHA M, ZBOROWSKA N, MARCINOWICZ P, et al. Oxidative stress biomarkers among schizophrenia inpatients[J]. Brain Sci, 2023, 13(3): 490
55. CHEN P, WANG D, XIU M, et al. Polymorphism of transferrin gene impacts the mediating effects of psychotic symptoms on the relationship between oxidative stress and cognition in patients with chronic schizophrenia[J]. Antioxidants (Basel), 2022, 11(1): 125.
56. CUENOD M, STEULLET P, CABUNGCAL J H, et al. Caught in vicious circles: A perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia[J]. Mol Psychiatry, 2022, 27(4): 1886-1897.
57. CRUZ B F, DE CAMPOS-CARLI S M, DE OLIVEIRA A M, et al. Investigating potential associations between neurocognition/social cognition and oxidative stress in schizophrenia[J]. Psychiatry Res, 2021, 298: 113832.
58. MAAS D A, EIJSINK V D, VAN HULTEN J A, et al. Antioxidant treatment ameliorates prefrontal hypomyelination and cognitive deficits in a rat model of schizophrenia[J]. Neuropsychopharmacology, 2021, 46(6): 1161-1171.
59. ARBAB A A I, LU X B, ABDALLA I M, et al. Metformin inhibits lipoteichoic acid-induced oxidative stress and inflammation through AMPK/NRF2/NF-κB signaling pathway in bovine mammary epithelial cells[J]. Front Vet Sci, 2021, 8: 661380.
60. VIAL G, DETAILLE D, GUIGAS B. Role of mitochondria in the mechanism(s) of action of metformin[J]. Front Endocrinol (Lausanne), 2019, 10: 294.
61. ZAMANIAN M Y, GIMÉNEZ-LLORT L, NIKBAKHTZADEH M, et al. The therapeutic activities of metformin: focus on the Nrf2 signaling pathway and oxidative stress amelioration[J]. Curr Mol Pharmacol, 2023, 16(3): 331-345.
62. GORGICH E A C, PARSAIE H, YARMAND S, et al. Long-term administration of metformin ameliorates age-dependent oxidative stress and cognitive function in rats[J]. Behav Brain Res, 2021, 410: 113343.
63. KOBORI A, MIYASHITA M, MIYANO Y, et al. Advanced glycation end products and cognitive impairment in schizophrenia[J]. PLoS One, 2021, 16(5): e0251283.
64. SRITAWAN N, SIRICHOAT A, ARANAROCHANA A, et al. Protective effect of metformin on methotrexate induced reduction of rat hippocampal neural stem cells and neurogenesis[J]. Biomed Pharmacother, 2023, 162: 114613.
【引用格式】朱厚名,崔翠翠,夏伟丽,等 . 二甲双胍改善精神分裂症认知功能障碍的机制研究进展[J]. 中国神经精神疾病杂志,2024,50(5):315-320.
【Cite this article】ZHU H M,CUI C C,XIA W L ,et al. Advances on the mechanisms of metformin in improving cognitive impairment in schizophrenia[J]. Chin J Nervous Mental Dis,2024,50(5):315-320.
DOI:10.3969/j.issn.1002-0152.2024.05.012